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Fakultat fur Physik, Universitat Freiburg, Hermann-Herder-Strasse 3, D-7800 Freiburg, 
West Germany 
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Abstract. A quantum Monte Carlo method developed in the first paper of this series is 
used to investigate the spin-; isotropic ferromagnet and antiferromagnet. Critical indices 
are computed in a high precision simulation. We obtain a = -0.261*0.013, y =  
1.552*0.008 for the ferromagnet, and a =-1.202*0.009, y =  1.132+0.012 for the 
antiferromagnet. 

1. Introduction 

In the first paper of this series (Marcu and Wiesler 1985, henceforth to be referred to 
as MW) we described a quantum Monte Carlo method for the xxz model defined by 
the Hamiltonian (throughout this paper we will use the notation of MW) 

For a finite lattice size N, the quantum statistical expectation value ( A ) N  of the operator 
A is the M + ~ o  limit of the expectation value ( A M ) N , M  computed in a classical 
two-dimensional model on an N x M chessboard lattice. This classical model is 
obtained via a path integral method that uses the Trotter formula (Trotter 1959, Suzuki 
1976, Barma and Shastry 1978, MW). The couplings of the classical model vary with 
M, and the M + 00 limit is an infinite anisotropy limit. Note that for a finite M the 
operator A is in general also approximated by an operator AM 

In order to compute the quantum statistical expectation values, two limits have to 
be performed. First, the M + CO limit is done by using the fact that, for the quantities 
we are interested in 

( A M ) N , M  = ( A ) N  + M - * ( ( A B ) N  - ( A ) N ( B ) N ) + O ( M - 3 )  (1.2) 

(Schmatzer (1983), the technicalities of the M + 00 limit will be discussed in detail in a 
forthcoming publication). Here B is a sum over all lattice translations of some local 
operator. The coefficient of 1/M2 is certainly finite for any fixed value of N, and it 
is uniformly bounded as long as the model has a finite correlation length. Thus we 
have to compute ( A M ) N , M  for a sequence of M and then, if M is high enough, do a 
linear fit in 11 M 2 .  The second limit is the thermodynamic limit. It is implemented by 
choosing a lattice that is larger than the correlation length. 

0305-4470/85/163189+ 15$02.25 0 1985 The Institute of Physics 3189 
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In MW we discussed what quantities can be computed using our quantum Monte 
Carlo method. Besides thermodynamic quantities like mean energy and specific heat, 
we discussed the static structure function I " " ( q )  (a = x, y, z), which is the thermo- 
dynamic limit of 

Zy(q) = 2;' Tr S " ( q ) S " ( - q )  e-BH (1.3) 

( P  is the inverse temperature), with S " ( q )  defined by 

27rk 
N 

q=-, k = l ,  . . . ,  N. 
l N  

S"(q )= -  C e8qrS;, JN r = l  
(1.4) 

Here S:  are the generators of SU(2) at the lattice site r. On the N x M chessboard 
lattice I z ( q )  is approximated by 

wheresisaspinconfigurat ion,s={s, :  r = l ,  . . . ,  N ; j = l ,  . . . ,  M } , s = * l , f ( p ) a r e  
the plaquette weights defined in MW, ZN,M is the partition function, and s j ( q )  is defined 
by 

N 2 7rk 
q=-, k = 1 ,  . . . ,  

N 
s j ( q )  = C e-lqrsi, 

r = l  
N. (1.6) 

The static structure function is a quantity that can be measured in neutron scattering 
experiments on quasi-one-dimensional materials; it is proportional to the intensity of 
the scattered neutrons (Marshall and Lovesey 1971). 

A quantity of great theoretical interest is the dynamic susceptibility xua(q,  w ) ,  
which is proportional to the differential cross section in neutron scattering experiments. 
x"" (4, w ) is defined by ( t is the real time) 

where 

S" (4, r )  = eiHtSa (9) e-iH'. 

(1.7) 

Unfortunately we cannot compute X"'"(q, w )  in general with our Monte Carlo method. 
However, xu" (4, 0) (this corresponds to elastic neutron scattering) can be written as 
an integral over Euclidian time: 

P 
x""(q, 0) = lo d4Su(q ,  O)S"(-q, i ~ ) ) .  

On the N x M chessboard lattice xZ'(q,  0) is approximated by 

(1.10) P 
p=even 

Xz,M(q, 0) = 

Note that in computing the quantum expectation value xZ' (q ,O)  for fixed N two 
approximations are made. Firstly, there is the usual approximation of the quantum 
expectation values by expectation values in the classical model on the N x M lattice. 
Secondly, the integral in (1.9) is approximated by a sum. As M + CO the main correction 
term is in both cases proportional to 1/ M2.  
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Since in this paper we are only dealing with the isotropic xxz model (J, = *l),  we 
simplify our notation by writing I ( q )  instead of I " ( q )  and x ( q ,  0) instead of x Z z ( q ,  0). 

The xxz spin-; model at finite temperatures was also studied by de Raedt and 
Lagendijk (see the review paper by de Raedt and Lagendijk 1985). However, they do  
not have a procedure to carry out the M + CO limit. Moreover, their method is restricted 

A S = 4 quantum Monte Carlo method is also described by Hirsch et a1 (1982). 
The relation of their method to ours is discussed in MW. 

One of the most interesting problems for spin-; xxz chains is the critical behaviour 
in the isotropic ferromagnet and antiferromagnet cases. In order to investigate critical 
properties one must in fact carry out an additional limit, namely the T +  0 limit ( T  is 
the temperature, the critical temperature being zero in one dimension). The computer 
time needed for our Monte Carlo simulation increases with decreasing temperature. 
The reason is twofold: both the values of M from which the higher order corrections 
in (1.2) become negligible, and the correlation length grow with decreasing temperature. 

We performed a high accuracy calculation for the isotropic ferromagnet and 
antiferromagnet. In order to be able to reach low enough temperatures, we used the 
CRAY 1/ M computer of Stuttgart University. The algorithm used was devised such 
as to make appropriate use of the vectorisation capabilities of the CRAY. It will be 
published elsewhere in a more general version, namely for the spin-S xyz model. 

For the ferromagnet we obtained for the critical indices a and y the values 
a = -0.261 k0.013, y = 1.552i.0.008. For the antiferromagnet we obtained a = 
-1.202i.0.009 and y =  1.132rt0.011. 

These values for the critical indices do not agree with other values published for 
the ferromagnet. Lyklema (1983) used Handscomb's method (Handscomb 1962,1964) 
to obtain a = -0.3 *0.1 and y = 1.75kO.02. A similar calculation was done by Chak- 
ravarty and Stein (1982), but they did not consider temperatures low enough for the 
onset of the critical behaviour. The Handscomb method uses an expansion of 
exp( - P H )  in powers of P. The discepancy between the Lyklema results and our should 
be resolved in the near future. Bonner and Fisher (1964) diagonalised the Hamiltonian 
exactly for small values of N and then extrapolated the results to the thermodynamic 
limit using an empirical numerical procedure. They obtained a = -0.475 k0.025 and 
y =  1.8. For low temperatures, however, the correlation length is much larger than 
their values of N, and it is conceivable that their thermodynamic limit is not correct. 
Baker et a1 (1964) used a high temperature expansion supplemented by a Pad6 analysis 
to obtain y = 1.67k0.1. 

In our method, as opposed to the other methods discussed above, all steps in the 
calculation are under control. The only point of uncertainty remaining is the possibility 
that for temperatures lower than those considered here, the system crosses over to a 
different critical behaviour. 

In 0 2 we present our results for the isotropic ferromagnet and in 9 3 those for the 
antiferromagnet. Our conclusions are given in 9 4. 

to s = 4. 

2. High precision simulation of the isotropic ferromagnet 

As described in the introduction, our quantum Monte Carlo method involves taking 
two limits, namely the M + CO limit and the thermodynamic limit. 



3192 M Marcu, J Muller and F-K Schmatzer 

Let us discuss the two limits in reverse order and start with the thermodynamic 
limit. This limit is performed by taking lattices with the value of N/2 larger than the 
correlation length (we take N/2 and not N because of the periodic boundary condi- 
tions). In practice the correlation length 6 is the value of r for which the correlation 
function c(  r )  = (S;S;+J becomes zero within statistical errors. The first step in the 
quantum Monte Carlo method consists in running low precision simulations for several 
values of p in order to determine the values of N that will be used in the high precision 
simulation. The values of p and N/2 used in the high precision simulations are given 
in table 1 together with the correlation length estimated from these simulations. 

Table 1. The values of P, 5 and N / 2  for the ferromagnet. 

P 1.0 1.65 2.7 3.5 4.5 5.75 7.4 9.5 12.2 15.65 20.0 
5 5 7 9 11 11 14 18 20 21 26 28 
NI 2 10 10 12 16 16 20 20 28 28 40 46 

For a fixed value of N, the M+oo limit is performed by taking M high enough 
such that the behaviour of (A)N- (AM)N,M (see (1.2)) is linear in 1/M2. The value 
of M where the linear region is reached varies according to the quantity A considered. 
In table 2 we illustrate this point for the energy density e and the magnetic susceptibility 
x(0,O). M m i ,  is the numerical estimate of the value of M where the linear regime sets 
in. Since we do not consider all possible values of M, Mmi ,  should be viewed as a 
rough estimate. M,,, is the highest value of M we consider. 

Table 2. The values M,,, and M,,, for the energy density e and the susceptibility x(0,O) 
(ferromagnet). 

Energy Susceptibility 

P Mmin Mmsx Mmin Mmax 

15.65 
12.20 
9.50 
7.40 
5.75 
4.50 
3.50 
2.70 
1.65 
1 .oo 

24 
16 
14 
12 
10 
8 
6 
4 
2 
2 

38 
36 
34 
32 
30 
26 
26 
26 
18 
16 

10 
10 
10 
6 
6 
4 
4 
4 
2 
2 

38 
36 
34 
32 
30 
26 
26 
26 
26 
14 

In order to determine critical exponents, the physical quantities have to be measured 
with high accuracy. It turns out that we have to increase the number of sweeps both 
with increasing values of p and with increasing values of M. Moreover, for fixed 
values of the ratio P / M  the number of sweeps has to be increased for increasing 
values of p. This situation is true both for the ferromagnet and for the antiferromagnet. 
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For the ferromagnet we also encountered another numerical problem. In the Monte 
Carlo simulation the successive measurements of a given quantity form a time series 
(Anderson 1971). In the ferromagnet case the time series correlation length increases 
sharply with increasing values of p and A4 (we used the group variance method for 
analysing the time series). For the antiferromagnet this does not happen. 

This can be understood within the particle line picture of MW. For the ferromagnet, 
typical configurations contain clusters of particle lines, and plaquettes inside such a 
cluster cannot be changed by the local Monte Carlo procedure (see MW for details). 
For the antiferromagnet, typical configurations contain N / 2  particle lines at a distance 
of two lattice spacings from one another. Therefore, many plaquettes are subject to 
updating by the local Monte Carlo procedure. 

In table 3 we illustrate the numerical problems encountered in the Monte Carlo 
simulation of the ferromagnet. For three values of p we list the values of M used, 
the number of sweeps and, for the energy density and the susceptibility, the lower and 
higher estimates Smin and Smax of the correlation length of the time series together with 
the statistical errors. Although these estimates are rough, they reproduce the overall 
trend accurately. The different behaviour of the energy density and susceptibility 
clearly shows that one has to do the whole numerical analysis for each quantity 
separately. The quantity with the longest time series correlation is the susceptibility. 
This is to be expected since the susceptibility is unaffected by the local bending of 
particle lines described in MW. 

Table 3. The values of N and M ,  the number N ,  of sweeps, the lower and upper estimates 
for the time series correlation length 5 and the statistical errors (for both e and ~ ( 0 ,  0))-all 
listed for three values of p (ferromagnet). 

7.4 

1 .o 20 
20 
20 
20 
20 
20 

40 
40 
40 
40 
40 
40 
40 
40 

15.65 80 
80 
80 
80 
80 
80 
80 
80 

2 
4 
6 
8 
10 
14 

6 
8 
10 
12 
14 
18 
26 
32 

10 
12 
14 
16 
20 
24 
30 
38 

20 000 
20 000 
20 000 
20 Ooo 
20 000 
40 000 

160 000 
160 000 
160 000 
160 000 
160 000 
160 000 
347 500 
430 000 

500 000 
500 000 
1200 000 
1000 000 
2000 000 
2225 000 
3037 500 
3950 000 

1 
1 
40 
60 
60 
140 

50 
70 
35 
70 
90 
40 
90 
120 

10 
500 
280 
1400 
500 
1400 
2200 
2500 

10 
10 
40 
140 
60 
200 

65 
90 
50 
70 
100 
90 
150 
120 

200 
800 
450 
1400 
1100 
1600 
2500 
3400 

0.000 31 
0.000 67 
0.001 1 
0.001 5 
0.001 9 
0.001 6 

0.000 021 
0.000 041 
0.000 055 
0.000 075 
0.000 090 
0.000 1 1  
0.000 1 1  
0.000 1 1  

0.000 0053 
0.000 0097 
0.000 0089 
0.000 014 
0.000 014 
0.000 018 
0.000 021 
0.000 023 

1 
1 
40 
1 
1 
1 

70 
70 
130 
90 
190 
190 
140 
120 

1 
300 
500 
1400 
1400 
2000 
2500 
4500 

1 
50 
80 
40 
40 
40 

85 
90 
180 
110 
220 
240 
160 
210 

5 
330 
800 
1650 
1400 
2200 
3500 
5200 

0.005 
0.005 
0.006 
0.005 
0.005 
0.003 

0.049 
0.067 
0.084 
0.10 
0.12 
0.12 
0.11 
0.10 

0.23 
0.33 
0.26 
0.42 
0.37 
0.45 
0.50 
0.56 
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For p =20 we did not take values of M high enough to determine the energy 
density, because this would have required an inordinate amount of computer time. 
Currently we are working on a computer program based on a completely new algorithm 
which will allow us to reach even lower temperatures. 

The xxz model is exactly soluble at zero temperature (des Cloizeaux and Gaudin 
1966). At T = 0 the energy density takes the value e, = -$. For a finite value of N the 
ground state is an ( N +  1)-dimensional SU(2) multiplet. Using the Wigner-Eckart 
theorem, it is then straightforward to show that 

lim x ( q ,  0) = 1/3( 1 +cos q ) ,  
7-0 

q # 0. 

Let us now present our results. In table 4 we list the values of the energy density 
e, of e - e,, of the statistical error Ae of e, and of the percentage error of e - eo. These 
results allow for a determination of the critical exponent a, since 

e - e,- p a - ' .  
In figure 1 we give a log-log plot of e - e, against p together with a linear fit through 
the last four data points. The estimated critical exponent is a = -0.261 10.013. 

Table 4. Monte Carlo results for the ferromagnetic energy density e (YO represents the 
percentage error of e - eo), 

P 
- 
15.65 
12.20 
9.50 
7.40 
5.75 
4.50 
3.50 
2.70 
1.65 
1.00 

e e - e,, Ae 

-0.244 62 
-0.242 59 
-0.239 84 
-0.236 16 
-0.231 14 
-0.224 85 
-0.216 33 
-0.205 69 
-0.174 75 
-0.133 36 

0.005 38 
0.007 41 
0.010 16 
0.013 84 
0.018 86 
0.025 15 
0.033 67 
0.044 32 
0.075 25 
0.11664 

0.000 054 
0.000 051 
0.000 084 
0.000 132 
0.000 130 
0.000 160 
0.000 170 
0.000 390 
0.000 610 
0.000 890 

O h  

1 .oo 
0.69 
0.82 
0.95 
0.69 
0.64 
0.51 
0.89 
0.81 
0.76 

The critical exponent a can also be computed from other physical quantities. For 
the ferromagnet, the specific heat results are not accurate enough to allow for a 
determination of a within reasonable errors. This is caused by the fact that a is quite 
small. The errors in the specific heat are around 4% (as opposed to MW, in this paper 
the errors are given at a confidence level of 68%, i.e. one standard deviation). Our 
specific heat results are consistent with Blote (1975). 

as 
T + 0 (for r # 0). For the ferromagnet c( 1) is directly related to the energy density e 

Equation (2.1) shows that the spatial correlation function c ( r )  converges to 

c( 1 )  = - fe. (2.3) 
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0 1 2 3 

log P 

Figure 1. Logarithmic plot of the ferromagnetic energy density. 

In table 5 we list our results for c(1). They are not as accurate as the energy density 
results (for the antiferromagnet this is not true). From the last seven data points we 
extrapolate for cy the value cy = -0.218 * 0.038. 

Table 5. Monte Carlo results for c(1) (ferromagnet). 

P 3 c ( u  3Ac(l) 

12.20 
9.50 
7.40 
5.75 
4.50 
3.50 
2.70 
1.65 
1 .oo 

0.242 73 
0.240 48 
0.236 01 
0.231 76 
0.225 13 
0.216 77 
0.203 13 
0.172 98 
0.134 05 

0.001 16 
0.001 38 
0.001 14 
0.000 73 
0.000 91 
0.000 65 
0.001 53 
0.001 41 
0.001 33 

The magnetic susceptibility x(0,O) diverges as T + 0. In table 6 we list the values 
of x ( O , O ) ,  the corresponding statistical errors Ax(0,O) and the percentage errors. Using 
these results we can determine the critical exponent y: 

Figure 2 shows a log-log plot of x(0,O) against p, together with a linear fit through 
the last seven data points. The extrapolated value for y is y = 1.552 * 0.008. 

In figure 3 we plot our results for the static structure function I (q j ,  in figure 4 we 
plot the dynamic susceptibility x(q, 0). Both converge towards the T-,  0 limits of (2.1). 
The results for I ( q )  and x(q, 0) for some values of q are listed in table 7. 
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Table 6. Monte Carlo results for x ( 0 , O )  (ferromagnet). 

P % 

20.00 
15.65 
12.20 
9.50 
7.40 
5.75 
4.50 
3.50 
2.70 
1.65 
1 .oo 

30.380 
20.653 
13.959 
9.661 
6.442 
4.363 
2.988 
2.076 
1.436 
0.713 
0.367 

0.980 00 
0.372 53 
0.208 73 
0.156 05 
0.074 52 
0.037 3 1 
0.018 24 
0.010 72 
0.014 84 
0.007 19 
0.003 63 

3.23 
1.80 
1 S O  
1.62 
1.16 
0.86 
0.61 
0.52 
1.03 
1.01 
0.99 

0 1 2 3 

log P 

Figure 2. Logarithmic plot of the ferromagnetic susceptibility. 

3. High precision simulation for the isotropic antiferromagnet 

For the antiferromagnet the asymptotic T + 0 behaviour sets on at a higher temperature 
than for the ferromagnet. In table 8 we list the values of p, N / 2  and 6 used in our 
high precision simulation. At the same temperature, the correlation length is longer 
than for the ferromagnet. 

In table 9 we list the values of Mmin and M,,, for the energy density e and the 
staggered susceptibility x(  n-, 0). For the antiferromagnet it is x( T, 0) rather than x(0,O) 
that diverges as T+O. From table 9 we see that for the antiferromagnet the linear 
region in l / M Z  is reached at higher values of M than for the ferromagnet. 

In table 10 we list, for three values of p, the values of M used, the corresponding 
number of sweeps and the statistical errors of e and x( .rr, 0). In the linear-in-l/ M 2  
regime, the errors of e show a slower increase with M than for the ferromagnet, and 
the errors of ~ ( n - ,  0) do not increase at all with M. Another difference from the 
ferromagnet is that the time series correlations stay short range even for large values 
of p or M, as mentioned in D 2. 
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Figure 3. I ( ¶ )  for the ferromagnet. Some numerical values of I ( q )  can be found in table 
7. At the peak, the higher values of I ( 0 )  correspond to the higher values of p. 

30- 
J 
I 

L 1 2 3  

Q 

Figure 4. x(q, 0) for the ferromagnet. Some numerical values of x ( q ,  0) can be found in 
table 7 .  At the peak, the higher values of x ( 0 , O )  correspond to the higher values of p. 

For the antiferromagnet, the critical exponent CY can be determined from the energy 
density, from the specific heat and from c( 1) .  At T = 0 the energy density takes the 
value e, = a - log 2. In table 1 1  we list the quantum Monte Carlo results for e, e - eo, 
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Table 7. The values of I ( q )  and x(q, 0) for some values of q for the ferromagnet. The 
integer k = 0, . . . , N / 2  is defined by q = 2nk/ N. The numbers in brackets are the errors 
in the last two figures. 

20.00 
15.65 
12.20 
9.50 
7.40 
5.75 
4.50 
3.50 
2.70 
1.65 
1 .oo 

0.3567 (31) 0.173 7 (15) 
0.3702 (15) 0.175 48 (89) 
0.3781 (15)  0.179 43 (81) 
0.3883 (17) 0.185 7 (IO) 
0.3968 (18) 0.191 75 (96) 
0.3970 (14) 0.198 95 (79) 
0.3946 (13) 0.203 89 (92) 
0.3826 ( IO)  0.206 79 (80) 
0.3607 (23) 0.205 7 (19) 
0.2940 (21) 0.187 6 (19) 
0.2153 (14) 0.151 7 (16) 

0 
pi 

pi 

m 
0 

I 

- 

., 

1.521 (46) 
1.319 (23) 
1.144 (17) 
1.017 (16) 
0.8711 (99) 
0.7589 (64) 
0.6640 (40) 
0.5930 (30) 
0.5319 (54) 
0.4320 (43) 
0.3668 (36) 

0.166 16 (63) 
0.166 77 (39) 
0.166 38 (41) 
0.166 27 (41) 
0.167 05 (44) 
0.168 05 (33) 
0.171 04 (35) 
0.177 73 (45) 
0.187 37 (98) 
0.207 7 (13) 
0.229 4 (14) 

0.164 50 (61) 
0.166 43 (52) 
0.166 593 (40) 
0.166 27 (40) 
0.16641 (52) 
0.165 87 (37) 
0.165 32 (35) 
0.165 09 (37) 
0.166 22 (97) 
0.169 2 (12) 
0.178 9 (16) 

0 1 2 

l og  P 

Figure 5. Logarithmic plot for the antiferromagnetic energy density 

Table 8. The values of P, f and N / 2  for the antiferromagnet. 

P 1.0 1.65 2.7 3.5 4.5 5.08 5.75 6.52 7.4 
5 5 7 12 15 17 19 21 24 26 
N I 2  10 10 16 16 20 22 24 28 30 

the error he, the specific heat C and the error AC. In table 12 we list the values of 
3c ( l ) ,  3c ( l )  - e,,, and the error 3Ac(l) (as opposed to the ferromagnet, 3c ( l )  = e). 
Using the last seven data points for e, we extrapolate the value a = - 1.202 * 0.009, as 
seen from the log-log plot of figure 5 .  From the last seven data points for c(1) we 
extrapolate the value a = -1.215 iO.011. The specific heat allows for a determination 
of a with a larger error. In figure 6 it is shown that an extrapolation through the last 
six data points yields the value a = -1.232 *0.040. 
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Table 9. The values M,,, and M,,, for the energy density e and staggered susceptibility 
x(  T, 0) (antiferromagnet). 

Energy Susceptibility 

P 

7.40 
6.52 
5.75 
5.08 
4.50 
3.50 
2.70 
1.65 
1 .oo 

22 
22 
16 
14 
12 

8 
6 
2 
2 

56 
46 
40 
38 
34 
26 
20 
18 
14 

14 56 
12 46 
10 40 
10 38 
10 34 
8 26 
4 20 
4 18 
2 14 

Table 10. The values of N and M, the number N ,  of sweeps, and the statistical errors (for 
both e and X ( T ,  0))-all listed for three values of P. 

1 .o 20 
20 
20 
20 
20 
20 
20 

3.5 32 
32 
32 
32 
32 
32 
32 
32 
32 

1.4 60 
60 
60 
60 
60 
60 
60 
60 
60 
60 
60 

2 
4 
6 
8 

10 
12 
14 

4 
6 
8 

10 
12 
14 
16 
20 
26 

8 
10 
12 
14 
16 
18 
22 
28 
36 
46 
56 

15 000 
15 000 
15 000 
15 000 
15 000 
15 000 
15 000 

140 000 
140 000 
140 000 
180 000 
180 000 
180 000 
200 000 
230 000 
260 000 

450 000 
450 000 
450 000 
450 000 
570 000 
660 000 
780 000 
840 000 
840 000 

1050 000 
1500 000 

0.000 71 
0.000 84 
0.001 8 
0.002 1 
0.002 8 
0.003 3 
0.003 3 

0.000 16 
0.000 15 
0.000 17 
0.000 17 
0.000 19 
0.000 23 
0.000 22 
0.000 25 
0.000 27 

0.000 050 
0.000 045 
0.000 044 
0.000 043 
0.000 043 
0.000 042 
0.000 044 
0.000 049 
0.000 058 
0.000 061 
0.000 060 

0.0057 
0.0047 
0.0048 
0.0048 
0.0045 
0.0045 
0.0048 

0.023 
0.016 
0.013 
0.01 1 
0.01 1 
0.012 
0.013 
0.012 
0.012 

0.054 
0.042 
0.037 
0.035 
0.029 
0.028 
0.027 
0.028 
0.030 
0.029 
0.028 

The staggered susceptibility diverges as T+O. In table 13 we list the values of 
,y( T, 0) and the corresponding errors and the percentage errors. Using these results 
we extrapolate the value y = 1.132*0.011 as shown in figure 7. 
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Table 11. hlonte Carlo results for the antiferromagnetic energy density (X represents the 
percentage error of e - eo) and specific heat. 

P e e - e, Ae % C AC 

7.40 
6.52 
5.75 
5.08 
4.50 
3.50 
2.70 
1.65 
1.00 

-0.436 98 
-0.434 97 
-0.432 37 
-0.429 28 
-0.424 78 
-0.410 87 
-0.386 77 
-0.304 84 
-0.204 64 

0.006 17 
0.008 18 
0,010 77 
0.013 87 
0.018 37 
0.032 28 
0.056 38 
0.138 31 
0.238 51 

0.000 075 
0.000 119 
0.000 129 
0.000 139 
0.000 171 
0.000 228 
0.000 453 
0.000 885 
0.001 244 

1.22 
1.45 
1.20 
1 .oo 
0.93 
0.71 
0.80 
0.64 
0.52 

0.1035 
0.1190 
0.1400 
0.1619 
0.1844 
0.2580 
0.2986 
0.3367 
0.1902 

0.0051 
0.0058 
0.0058 
0.0058 
0.0059 
0.0055 
0.0130 
0.0091 
0.0028 

Table 12. Monte Carlo results for c(1) (antiferromagnet). 

P 

7.4 
6.52 
5.75 
5.08 
4.5 
3.5 
2.7 
1.65 
1 .o 

-0.436 86 
-0.435 08 
-0.432 47 
-0.429 16 
-0.425 03 
-0.410 44 
-0.386 44 
-0.305 92 
-0.204 68 

3c( 1) - eo 

0.006 28 
0.008 07 
0.010 68 
0.013 99 
0.018 12 
0.032 71 
0.056 70 
0.137 23 
0.238 46 

3Ac(l) 

0.000 127 
0.000 123 
0.000 164 
0.000 164 
0.000 196 
0.000 295 
0.000 541 
0.000 895 
0.001 004 

I 

'1,. 

- 2  5 0  I 0 1 2 

log P 

Figure 6. Logarithmic plot for the antiferromagnetic specific heat. 

The quantity I (  T) also diverges as T-, 0. For the ferromagnet I ( 0 )  is not indepen- 
dent from x(0, 0), since x(0,O) = p I ( 0 ) .  For the antiferromagnet we are not aware of 
a similar relation between x( T, 0) and I (  T). I (  T) diverges according to a power law 
of the type of (2.4) and we denote the corresponding exponent by 7. In table 14 we 
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9 
I 

x 
m - 

0- 

- 1  

3201 

" , , 1 , , , , , , , , , 1 , I ' , , , I 

Table 13. Monte Carlo results for x(n,  0) (antiferromagnet). 

9 
I 

x 
m - 

0- 

- 1  

7.40 4.6247 
6.52 4.0072 
5.75 3.4606 
5.08 3.0202 
4.50 2.6180 
3.50 1.9462 
2.70 1.4170 
1.65 0.7423 
1 .oo 0.3814 

" , , 1 , , , , , , , , , 1 , I ' , , , I 

0.024 33 0.56 
0.023 29 0.53 
0.020 82 0.60 
0.016 82 0.56 
0.013 40 0.62 
0.012 23 0.63 
0.011 41 0.80 
0.007 72 1.04 
0.003 22 0.84 

2 1  

1 i .." 

Table 14. Monte Carlo results for I ( n )  (antiferromagnet). 

P I ( n )  A I ( r r )  

7.40 
6.52 
5.75 
5.08 
4.50 
3.50 
2.70 
1.65 
1 .oo 

1.0245 
0.9851 
0.9451 
0.9102 
0.8751 
0.7936 
0.7115 
0.5494 
0.4246 

0.0034 
0.0035 
0.0036 
0.0033 
0.0036 
0.0034 
0.0042 
0.0046 
0.0032 

susceptibility. 

list the values of I ( r )  and the corresponding errors. A linear fit through the last five 
data points leads to the value 7 = 0.317 * 0.007. 

In figure 8 we plot our results for I (  q )  and in figure 9 we plot x( q, 0). The numerical 
results for I ( q )  and x ( q ,  0) for some values of q are listed in table 15. 
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4 

Figure 8. Z ( q )  for the antiferromagnet. Some numerical values of I ( q )  can be found in 
table 15. At the peak, the higher values of I ( n )  correspond to the higher values of p. 

Figure 9. x (q ,  0) for the antiferromagnet. Some numerical values of x(q, 0) can be found 
in table 15. At the peak, the higher values of ,y( m, 0) Correspond to the higher values of p. 

4. Conclusions and outlook 

For the first time a high precision quantum Monte Carlo simulation was performed. 
The results are accurate enough to investigate the critical behaviour of the xxz spin-f 
ferromagnet and antiferromagnet. 

At present we are continuing the investigation of the xxz models using generalisa- 
tions of our method for higher spins o'n the one hand, and for spin-: but more than 
one dimension on the other. 
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Table 15. The values of I ( q )  and x(q, 0) for some values of q for the antiferromagnet, 
presented in the same way as for the ferromagnet. 

P X("I2,O) X ( 0 , O )  1(n /2)  i(0) 

7.40 
6.52 
5.75 
5.08 
4.50 
3.50 
2.70 
1.65 
1 .oo 

0.20409 (31) 0.115 91 (38) 
0.205 67 (45) 0.118 26 (42) 
0.209 06 (49) 0.119 27 (41) 
0.211 74(44) 0.12060(38) 
0.21643 (56) 0.123 21 (30) 
0.227 63 (62) 0.128 12 (47) 
0.240 6 (13) 0.135 l ( l 0 )  
0.243 7 (16) 0.146 2 (10) 
0.202 0 (12) 0.1363 (11) 

0.17047 (14) 
0.170 35 (18) 
0.17045 (18) 
0.170 80 (21) 
0.171 03 (18) 
0.173 34 (34) 
0.177 87 (70) 
0.197 12 (80) 
0.221 9 (15) 

0.015 665 (52) 
0.018 138 (63) 
0.020 768 (83) 
0.023 739 (74) 
0.029 853 (68) 
0.036 61 (13) 
0.050 04 (37) 
0.088 58 (65) 
0.1363 (11) 
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